Human developmental psychology has found infant behavior to be a

Human developmental psychology has found infant behavior to be a vital part of the early environmental setting. In the rodent model, the different ways selleck inhibitor that a rodent neonate

or pup can influence social dynamics are not well known. Typically, litters of neonates or pups offer complex social interactions dominated by behavior seemingly initiated and maintained by the primary caregiver (e.g., the dam). Despite this strong role for the caregiver, the young most likely influence the litter dynamics in many powerful ways including communication signals, discrimination abilities and early approach behavior. Nelson and Panksepp (1996) developed a preference task to examine early rodent pup social motivation. We have used the same task to examine how variations in maternal care or different environmental perturbations could alter the

rat pup preferences for social-related stimuli. Rat pups receiving low levels of maternal licking and grooming were FXR agonist impaired in maternal odor cue learning and emitted lower levels of 22 kHz ultrasounds compared to pups from the high licking and grooming cohort. Prenatal stress or early exposure to a toxicant (polychlorinated biphenyl) altered early social preferences in the rat pup in different ways indicating that diverse strategies are expressed and specific to the type of perturbation exposure. A greater focus on the offspring motivation following early ‘stressors’ will allow for more complete understanding of the dynamics in behavior during early social development. (C) 2011 Elsevier Ltd. All rights reserved.”
“With the steadily increasing number of publications in the field of stress research it has become evident C646 mouse that the conventional usage of the stress concept bears considerable problems. The use of the term

‘stress’ to conditions ranging from even the mildest challenging stimulation to severely aversive conditions, is in our view inappropriate. Review of the literature reveals that the physiological ‘stress’ response to appetitive, rewarding stimuli that are often not considered to be stressors can be as large as the response to negative stimuli. Analysis of the physiological response during exercise supports the view that the magnitude of the neuroendocrine response reflects the metabolic and physiological demands required for behavioural activity. We propose that the term ‘stress’ should be restricted to conditions where an environmental demand exceeds the natural regulatory capacity of an organism, in particular situations that include unpredictability and uncontrollability. Physiologically, stress seems to be characterized by either the absence of an anticipatory response (unpredictable) or a reduced recovery (uncontrollable) of the neuroendocrine reaction. The consequences of this restricted definition for stress research and the interpretation of results in terms of the adaptive and/or maladaptive nature of the response are discussed.

Comments are closed.