PubMedCrossRef 25. Jouini A, Ben Slama K, Vinué L, Ruiz E, Saenz Y, Somalo S, Klibi N, Zarazaga M, Ben Moussa M, Boudabous A, Torres C: Detection of unrelated Escherichia coli strains harboring genes of CTX-M-15, OXA-1, and AAC(6′)-Ib-cr enzymes in a Tunisian hospital and characterization of their integrons and
AZD1480 solubility dmso virulence factors. J Chemother 2010, 22:318–323.PubMed 26. Clermont O, Lavollay M, Vimont S, Deschamps C, Forestier C, Branger C, Denamur E, Arlet G: The CTX-M-15-producing Escherichia coli diffusing clone belongs to a highly virulent B2 phylogenetic subgroup. J Antimicrob Chemother 2008, 61:1024–1028.PubMedCrossRef 27. Johnson JR, Porter SB, Zhanel G, Kuskowski MA, Denamur E: Virulence of Escherichia coli clinical
isolates in a murine sepsis model in relation to sequence type ST131 status, fluoroquinolone resistance, and virulence genotype. Infect Immun 2012, 80:1554–1562.PubMedCrossRef 28. Lavigne JP, Vergunst AC, Goret L, Sotto A, Combescure C, Blanco J, O’Callaghan D, Nicolas-Chanoine MH: Virulence potential and genomic mapping of the worldwide clone Escherichia coli ST131. PLoS One 2012, 7:e34294.PubMedCrossRef 29. Pullinger GD, Lax AJ: A Salmonella dublin virulence plasmid locus that affects bacterial growth under nutrient-limited conditions. Mol Microbiol 1992, 6:1631–1643.PubMedCrossRef 30. Shin J, Kim DH, Ko KS: Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J Infect 2011, 63:39–47.PubMedCrossRef 31. Peirano G, Pillai DR, Pitondo-Silva A, Richardson D, Pitout JD: Florfenicol Obeticholic clinical trial The characteristics of NDM-producing Klebsiella pneumoniae from Canada. Diagn Microbiol Infect Dis 2011, 71:106–109.PubMedCrossRef 32. Peirano G, Moolman J, Pitondo-Silva A, Pitout JD: The characteristics of VIM-1-producing Klebsiella pneumoniae from South Africa. Scand J Infect Dis 2012, 44:74–78.PubMedCrossRef 33. Williams JJ, Hergenrother PJ: Artificial activation of toxin–antitoxin systems as an antibacterial strategy.
Trends Microbiol 2012, 20:291–298.PubMedCrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions Conception and design of the study: BM, GA, AH. Laboratory work: BM, HH, NG. Data analysis and interpretation: BM, JJ. Manuscript writing, review, and/or revision: BM, GA, AH. All authors read and approved the final manuscript.”
“Background Microbial life thrives in natural waters, including those found deep in the terrestrial subsurface [1]. Groundwater there may contain little or no dissolved oxygen, and in such cases microbial https://www.selleckchem.com/products/apo866-fk866.html activity is dominated by populations that can respire using other electron acceptors such as ferric iron, sulfate, or carbon dioxide. By catalyzing a diverse array of oxidation and reduction reactions, microorganisms (i.e.